1. (20pts) This question is about singular value decomposition.
(a) Consider

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

i. Compute $A^{T} A$. Find the eigenvalues of $A^{T} A$.
ii. Compute the singular value decomposition of A.
iii. Write A as a linear combination of eigen-images.
(b) Hence or otherwise, compute the singular value decomposition of

$$
A^{\prime}=\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

and write A^{\prime} as a linear combination of eigen-images.

$$
\begin{aligned}
& (a)(1) \quad A^{\top} A=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \operatorname{det}\left(A^{\top} A-\lambda i\right) \\
& =(2-\lambda)^{2}(1-\lambda)-4+4 \lambda \\
& =-1 \lambda^{3}+5 \lambda^{2}-8 \lambda+4-4+4 \lambda \\
& =-\lambda(\lambda-1)(\lambda-4) \\
& \therefore \lambda_{1}=4, \lambda_{L}=1, \lambda_{3}=0 \\
& \sigma_{1}=2, \sigma_{2}=1, \sigma_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore V_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] \\
& \lambda_{2}:\left[\begin{array}{ccc}
2-1 & 2 & \\
2 & 2-1 & \\
& \\
\operatorname{RDE} \bar{r} \\
\hline
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
v_{2} & =\left[\begin{array}{ll}
0 \\
0 \\
1 &
\end{array}\right] \\
\lambda_{3}: & {\left[\begin{array}{ccc}
2-0 & 2 \\
2 & 2-0 & 1-0
\end{array}\right] \xrightarrow{R R Z F}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] } \\
U_{3} & =\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right]
\end{aligned}
$$

So we get V.
Note $A^{\top}=A \Rightarrow A=V I V^{\top}$

$$
\begin{aligned}
& \therefore A=V \Sigma V^{\top} \\
& \therefore \\
& \therefore\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & \\
& 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

($\because i$,)

$$
\begin{aligned}
& =2\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]\left[\begin{array}{lll}
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right] \\
& +1\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]+0\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / 5 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2} \\
0
\end{array}\right] \\
& =2\left[\begin{array}{ccc}
1 / 2 & 1 / 1 & 0 \\
1 / 1 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]+1\left[\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1
\end{array}\right] \\
& +0\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(h).

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & 2 & \\
2 & 1 & \\
& & 3
\end{array}\right]} \\
& =4\left[\begin{array}{lll}
1 / L & 1 / 2 & \\
1 / 2 & 1 / 2 & \\
& & 0
\end{array}\right] \\
& +0\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & \\
-1 / 2 & 1 / 2 & 0
\end{array}\right] \\
& =V\left[\begin{array}{lll}
4 & & \\
& 3 & \\
& & 0
\end{array}\right] V^{\top}
\end{aligned}
$$

7. Consider a matrix $A \in M_{M \times N}(\mathbb{R})$, and let

$$
A=U \Sigma V^{T}
$$

be one of its singular value decompositions, such that $\sigma_{i i} \geq \sigma_{j j}$ whenever $i<j$.
(a) Show that the K-tuple $\left(\sigma_{11}, \sigma_{22}, \ldots, \sigma_{K K}\right)$, where $K=\min \{M, N\}$, is uniquely determined.
(b) Show that if $\left\{\sigma_{i i}: i=1,2, \ldots, K\right\}$ are distinct and nonzero, then the first K columns of U and V are uniquely determined up to a change of sign. In other words, for each $i=1,2, \ldots, K$, there are exactly two choices of $\left(\vec{u}_{i}, \vec{v}_{i}\right)$; denoting one choice by (\vec{u}, \vec{v}), the other is given by $(-\vec{u},-\vec{v})$.

$$
\omega
$$

$$
A A^{\top}=U I I^{\top} U^{\top}
$$

$\therefore\left\{\sigma_{i}\right\}_{i=1}^{k}$ are square coots of the K langer eiganiolus of $A^{\top} A$ and $A A^{\top}$, in descending order,
\therefore Unique.
(b). If $\sigma_{1}>\sigma_{2}>\cdots>\sigma_{k}>0$,
σ_{i}^{2} is an eigacele of $A A^{-}$,
woth dimension $=1$
\therefore Tho unit eigmuectors, with a difference in sys. ($u_{\text {, or }}-u_{\text {, }}$)
σ_{i}^{2} is an eignchele of $\bar{A}^{\top} A$, woth dimension $=1$
\therefore Tho unit eigunvectors, with a differance in syn. (v_{i} or $-v_{i}$)
Choosig a volid SUD:

$$
\begin{aligned}
& A=U \Sigma V^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & & 1 \\
u_{1} & \cdots & u_{k} \\
1 & & 1
\end{array}\right]\left[\begin{array}{lll}
\gamma_{1} & & \\
& \ddots & o_{k}
\end{array}\right]\left[\begin{array}{cc}
-v_{1}^{i}- \\
\vdots & \\
-v_{k}^{i}
\end{array}\right] \\
& =\sum_{i=1}^{k} \sigma_{i} \underline{\underline{u_{i}}} \underline{\underline{v_{i}}}=\sum_{i=1}^{k} \sigma_{i}\left(\underline{\left.\underline{-u_{i}}\right)} \underline{\left(-v_{i}\right.}\right)^{\top}>0 \text {, so dk } \\
& \left.=\sum_{i=1}^{K}\left(-\sigma_{i}\right)\left(\underline{-u_{i}}\right) \underline{\left(v_{i}^{\top}\right.}\right)=\sum_{i=1}^{K}\left(-\sigma_{i}\right)\left(\underline{u_{i}}\right)\left(\underline{\left.\underline{-v_{i}}\right)^{\top}}\right. \text { (0, ut }
\end{aligned}
$$

Haar Transform
Since Images are in Matrix form, finding goodnays to represent images means finding good nays to stove the wows and columns. i.e. change the basis.

Let $\vec{a} \in \mathbb{R}^{n},\left\{\vec{b}_{1}, \cdots, \vec{b}_{n}\right\}$ orthanovenel basis, we know $\vec{a}=\beta_{1} \vec{b}_{1}+\cdots+\beta_{n} \vec{b}_{n}$ to find the coefferemts,

$$
\begin{aligned}
\vec{b}_{j} \cdot \vec{a} & =\beta_{1} \vec{b}_{j} \cdot \vec{b}_{1}+\cdots+\beta_{j} \vec{b}_{j} \cdot \vec{b}_{j}+\cdots+\beta_{n} \vec{b}_{j} \cdot \vec{b}_{n} \\
& =\beta_{j} \\
\therefore B^{\top} H & =\left[\begin{array}{c}
-\vec{b}_{n}- \\
\vdots \\
-\vec{b}_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{1}{\vec{a}_{1}} \\
1 & \cdots
\end{array}\right]
\end{aligned}
$$

is charging the basis of columns of A.

$$
B^{i} A B=\left(\left[\begin{array}{c}
-\vec{b}_{1} \\
\vdots \\
-\vec{b}_{n}
\end{array}\right]\left[\begin{array}{ccc}
1 & & 1 \\
\vec{a}_{1} & \cdots & \vec{a}_{n} \\
1 & & 1
\end{array}\right]\right)\left[\begin{array}{ccc}
1 & & 1 \\
b_{1} & \cdots & \vec{b}_{n} \\
1 & & 1
\end{array}\right]
$$

is charging the basis of rows of $B^{\top} A$

Also, $2 t$ both $C, 1)$ has linearly independent columns,

$$
\begin{aligned}
& C^{\top} A D= \\
& {\left[\begin{array}{ccc}
1 & & 1 \\
\vec{c}_{1} & \cdots & \vec{c}_{n} \\
1 & & 1
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
-\vec{d}_{1}^{\top} \\
\vdots \\
-\vec{d}_{n}^{\top}-
\end{array}\right]} \\
& =\sum_{i} \sum_{j} a_{i j}\left[\begin{array}{ccc}
1 & & 1 \\
\vec{c}_{1} & \cdots & \vec{c}_{n} \\
1 & & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & 1 & 1 \\
0 & 1 & \ddots \\
0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
-\vec{d}_{1}^{\top}- \\
\vdots \\
-\dot{\vec{d}}_{n}{ }^{\top}-
\end{array}\right] \\
& =\sum_{i} \sum_{j} a_{i j} \xrightarrow[\vec{c}_{i} \vec{d}_{j}^{\top}]{ }
\end{aligned}
$$

re a basis of Image Space proof of LI in the last page.

We learnt SVD to do image compression, which can reduce $H \times W$ pixel values to $(H+W+1) \cdot K, K=$ no. of singular values. But we nary need move vales to stere an image in SVD form (for large k).
This is because we also need to store the wal. of U and V.

So we may want to find sone good basis to represent all images, e.g. Haar Transform.
2. (20pts) Recall that the 0-th Haar function is

$$
H_{0}(t)= \begin{cases}1 & \text { if } 0 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

and the other Haar functions are defined by

$$
H_{2^{p}+n}(t)= \begin{cases}2^{\frac{p}{2}} & \text { if } \frac{n}{2^{p}} \leq t<\frac{n+0.5}{2^{p}} \\ -2^{\frac{p}{2}} & \text { if } \frac{n+0.5}{2^{p}} \leq t<\frac{n+1}{2^{p}} \\ 0 & \text { otherwise }\end{cases}
$$

for $p=0,1,2, \cdots$ and $n=0,1,2, \cdots, 2^{p}-1$.
(a) Write down the Haar transform matrix for a 4×4 image, ie. the matrix such that the Haar transform of f is $H f H^{T}$.
(b) Compute the Haar transform \tilde{g} of the following 4×4 image

$$
g=\left(\begin{array}{llll}
5 & 3 & 0 & 0 \\
9 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(a) $\quad H=\left[\begin{array}{cccc}1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & -1 / 2 & -1 / 2 \\ 1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 \\ 0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]$
(b).

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 & -1 / 2 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 \\
0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccccc}
5 & 3 \\
\rho & \\
= & {\left[\begin{array}{ccccc}
7 & 3 / 2 \\
7 & 3 / 2 \\
-2 \sqrt{2} & 3 / \sqrt{2} \\
0 & 0 & &
\end{array}\right]\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 & -1 / 2 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 \\
0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]^{\top}} \\
= & {\left[\begin{array}{ccccc}
1 / 2 & 1 / 2 & 1 / \sqrt{2} & 0 \\
1 / 2 & 1 / 2 & -1 / \sqrt{2} & 0 \\
1 / 2 & -1 / 2 & 0 & 1 / \sqrt{2} \\
1 / 2 & -1 / 2 & 0 & -1 / \sqrt{2}
\end{array}\right]^{17 / 4} 17 / 4} & 11 / 2 \sqrt{2} & 0 \\
17 / 4 & 17 / 4 & 11 / 2 \sqrt{2} & 0 \\
-1 / 2 \sqrt{2} & -1 / 2 \sqrt{2} & -7 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

$$
C, D \subseteq \mathbb{R}^{n \times n}
$$

Suppose both $\left\{\vec{C}_{i}\right\}_{i=1}^{n},\left\{\vec{d}_{j}\right\}_{j=1}^{n}$ wive L.I.
(the columns of C and D)
Then $\sum_{j=1}^{n} \sum_{j=1}^{n} \alpha_{i j} \vec{c}_{i} \vec{d}_{j}{ }^{\top}=0 \leftarrow$ zeno $n \times n$ matin

$$
\begin{aligned}
& \Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left[d_{1 j} \vec{c}_{i}|\cdots| d_{n j} \vec{c}_{i}\right]=0 \\
& \Rightarrow\left[\sum_{i=1}^{n}\left(\sum_{j=1}^{n} d_{i j} d_{1 j}\right) \vec{c}_{i}|\cdots| \sum_{i=1}^{n}\left(\sum_{j=1}^{n} d_{i j} d_{n j}\right) \vec{c}_{i}\right]=0
\end{aligned}
$$

By Li of $\left\langle\vec{c}_{i}\right|$,

$$
\begin{aligned}
& \sum_{j=1}^{n} d_{i j} d_{1 j}=\sum_{j=1}^{n} d_{i j} d_{2 j}=\cdots=\sum_{j=1}^{n} d_{i j} d_{n j}=0 \forall i \\
& \text { ie. }\left[\begin{array}{c}
\sum_{j=1}^{n} d_{i j} d_{1 j} \\
\vdots \\
\sum_{j=1}^{n} d_{i j} d_{n j}
\end{array}\right]=0 \quad \forall i \\
& \Rightarrow \sum_{j=1}^{n} d_{i j}\left[\begin{array}{c}
d_{1 j} \\
\vdots \\
d_{n j}
\end{array}\right]=0 \quad \forall i \\
& \Rightarrow \sum_{j=1}^{n} d_{i j} \vec{u}_{j}=0 \quad \forall i
\end{aligned}
$$

by L. I of $\left\{\vec{a}_{j}\right\}, \alpha_{i j}=0 \forall i, j$.

$$
\therefore\left\{\vec{c}_{i} \vec{u}_{j}^{i}\right\}_{i, j=1}^{n} \text { are L.I. }
$$

